翻訳と辞書
Words near each other
・ Semi-Lagrangian scheme
・ Semi-local ring
・ Semi-locally simply connected
・ Semi-log plot
・ Semi-major axis
・ Semi-membership
・ Semi-Mental
・ Semi-minor axis
・ Semi-mobile
・ Semi-Monde
・ Semi-monocoque
・ Semi-On
・ Semi-Onsen Station
・ Semi-Open Game
・ Semi-opera
Semi-orthogonal matrix
・ Semi-p
・ Semi-periphery countries
・ Semi-Permanent
・ Semi-porcelain
・ Semi-portable engine
・ Semi-postal stamp
・ Semi-presidential system
・ Semi-Pro
・ Semi-pro
・ Semi-professional
・ Semi-proportional representation
・ Semi-rigid airship
・ Semi-rigid molecule
・ Semi-s-cobordism


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Semi-orthogonal matrix : ウィキペディア英語版
Semi-orthogonal matrix

In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of columns exceeds the number of rows, then the rows are orthonormal vectors; but if the number of rows exceeds the number of columns, then the columns are orthonormal vectors.
Equivalently, a non-square matrix ''A'' is semi-orthogonal if either
:A^T A = I \text A A^T = I. \, 〔 Abadir, K.M., Magnus, J.R. (2005). Matrix Algebra. Cambridge University Press.〕
In the following, consider the case where ''A'' is an ''m'' × ''n'' matrix for ''m'' > ''n''.
Then
:A^T A = I_n, \,
which implies the isometry property
:\|A x\|_2 = \|x\|_2 \, for all ''x'' in R''n''.
For example,
\begin1 \\ 0\end
is a semi-orthogonal matrix.
A semi-orthogonal matrix ''A'' is semi-unitary (either ''A''''A'' = ''I'' or ''AA'' = ''I'') and either left-invertible or right-invertible (left-invertible if it has more rows than columns, otherwise right invertible). As a linear transformation applied from the left, a semi-orthogonal matrix with more rows than columns preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation or reflection.
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Semi-orthogonal matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.